3.786 \(\int \frac{1}{\cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=186 \[ -\frac{i}{4 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{1}{6 a d \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \]

[Out]

((1/8 + I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(5/2)*d) + (I/5)/(d*Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)) + 1/(6*a*d*Cot[c + d*x]
^(3/2)*(a + I*a*Tan[c + d*x])^(3/2)) - (I/4)/(a^2*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.355246, antiderivative size = 186, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {4241, 3546, 3544, 205} \[ -\frac{i}{4 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \sqrt{\tan (c+d x)} \sqrt{\cot (c+d x)} \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{a^{5/2} d}+\frac{1}{6 a d \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

((1/8 + I/8)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[
Tan[c + d*x]])/(a^(5/2)*d) + (I/5)/(d*Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)) + 1/(6*a*d*Cot[c + d*x]
^(3/2)*(a + I*a*Tan[c + d*x])^(3/2)) - (I/4)/(a^2*d*Sqrt[Cot[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 4241

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rule 3546

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n)/(2*b*f*m), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx &=\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\tan ^{\frac{5}{2}}(c+d x)}{(a+i a \tan (c+d x))^{5/2}} \, dx\\ &=\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}-\frac{\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\tan ^{\frac{3}{2}}(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx}{2 a}\\ &=\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac{1}{6 a d \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}} \, dx}{4 a^2}\\ &=\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac{1}{6 a d \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac{i}{4 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (i \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{8 a^3}\\ &=\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac{1}{6 a d \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac{i}{4 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}+\frac{\left (\sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{4 a d}\\ &=\frac{\left (\frac{1}{8}+\frac{i}{8}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right ) \sqrt{\cot (c+d x)} \sqrt{\tan (c+d x)}}{a^{5/2} d}+\frac{i}{5 d \cot ^{\frac{5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac{1}{6 a d \cot ^{\frac{3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac{i}{4 a^2 d \sqrt{\cot (c+d x)} \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 2.54816, size = 158, normalized size = 0.85 \[ \frac{\cot ^{\frac{3}{2}}(c+d x) \sec (c+d x) \left (30 e^{2 i (c+d x)} \sqrt{-1+e^{2 i (c+d x)}} \csc (2 (c+d x)) \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )+2 \sec (c+d x) (20 \sin (2 (c+d x))-26 i \cos (2 (c+d x))+11 i)\right )}{120 a^2 d (\cot (c+d x)+i)^2 \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]

[Out]

(Cot[c + d*x]^(3/2)*Sec[c + d*x]*(30*E^((2*I)*(c + d*x))*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x)
)/Sqrt[-1 + E^((2*I)*(c + d*x))]]*Csc[2*(c + d*x)] + 2*Sec[c + d*x]*(11*I - (26*I)*Cos[2*(c + d*x)] + 20*Sin[2
*(c + d*x)])))/(120*a^2*d*(I + Cot[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.386, size = 661, normalized size = 3.6 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x)

[Out]

(1/120+1/120*I)/d/a^3*(-60*I*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)^
3+40*I*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^3-52*I*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*
x+c)^2+60*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)^2+30*I*a
rctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)*cos(d*x+c)^2-40*((cos(d*x+c)-1)/sin(d*x+c
))^(1/2)*cos(d*x+c)^3-52*sin(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*cos(d*x+c)^2-30*cos(d*x+c)*sin(d*x+c)*ar
ctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+45*I*cos(d*x+c)*arctan((1/2+1/2*I)*((cos(d
*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)-40*I*cos(d*x+c)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)+37*I*((cos(d*x+c
)-1)/sin(d*x+c))^(1/2)*sin(d*x+c)-15*sin(d*x+c)*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*
2^(1/2)-15*I*arctan((1/2+1/2*I)*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*2^(1/2))*2^(1/2)+40*cos(d*x+c)*((cos(d*x+c)-
1)/sin(d*x+c))^(1/2)+37*((cos(d*x+c)-1)/sin(d*x+c))^(1/2)*sin(d*x+c))*cos(d*x+c)^3*(a*(I*sin(d*x+c)+cos(d*x+c)
)/cos(d*x+c))^(1/2)/(4*I*sin(d*x+c)*cos(d*x+c)^2+4*cos(d*x+c)^3-I*sin(d*x+c)-3*cos(d*x+c))/sin(d*x+c)^3/(cos(d
*x+c)/sin(d*x+c))^(5/2)/((cos(d*x+c)-1)/sin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: RuntimeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError

________________________________________________________________________________________

Fricas [B]  time = 1.49413, size = 1067, normalized size = 5.74 \begin{align*} \frac{{\left (30 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (\frac{1}{4} \,{\left (4 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 30 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (6 i \, d x + 6 i \, c\right )} \log \left (-\frac{1}{4} \,{\left (4 \, a^{3} d \sqrt{\frac{i}{8 \, a^{5} d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} - 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}}{\left (23 \, e^{\left (6 i \, d x + 6 i \, c\right )} - 34 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 14 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-6 i \, d x - 6 i \, c\right )}}{120 \, a^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/120*(30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(6*I*d*x + 6*I*c)*log(1/4*(4*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(2*I*d*x +
2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))
*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(6*I*d*x + 6*
I*c)*log(-1/4*(4*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(2*I*d*x + 2*I*c) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s
qrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(e^(2*I*d*x + 2*I*c) - 1)*e^(I*d*x + I*c))*e^(-I*d*
x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) -
1))*(23*e^(6*I*d*x + 6*I*c) - 34*e^(4*I*d*x + 4*I*c) + 14*e^(2*I*d*x + 2*I*c) - 3)*e^(I*d*x + I*c))*e^(-6*I*d*
x - 6*I*c)/(a^3*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cot \left (d x + c\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(1/((I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c)^(5/2)), x)